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Advances in Real-Time Rendering in   

3D Graphics and Games Course Overview 

 Real-time Demo 

 Graphical Features 

 Indirect Lighting 

 Shading 

 Post Processing 

 Particles 

 Questions 
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Elemental demo 

 GDC 2012 demo behind closed doors 

 Demonstrate and drive development of Unreal® Engine 4  

 NVIDIA® Kepler GK104 (GTX 680) 

 Direct3D® 11 

 No preprocessing 

 Real-time 

 30 fps 

 FXAA 

 1080p at 90% 
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Transition to Unreal Engine 4 

 Shrink 

 Removed rarely used features 

 Unify renderer interface using Direct3D 11 as guidance 

 Research 

 Samaritan demo (Direct3D 11, Deferred shading, Tessellation, …) 

 Elemental demo (Global Illumination, …) 

 Expand 

 Bigger changes (Derived Data cache, new Editor UI, …) 
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Working on Unreal Engine 4 

 This caught our attention: 

Interactive Indirect Illumination and Ambient Occlusion 

Using Voxel Cone Tracing [Crassin11] 

More details: 

Beyond Programmable Shading Course 

Tuesday, 9 am - 12 pm 
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 Volume ray casting [Groeller05] 

 Start with some start bias 

 Content adaptive step size 

 Lookup radiance and occlusion 

 Accumulate light with occlusion 

 Stop if occluded or far enough 

 Cone trace 

 Mip level from local cone width 

 Progressively increasing step size 

Voxel Cone Tracing Concept 

Cone 

Voxel 

Data 
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Using Voxel Cone Tracing for GI  1/2 

 Like “Ray-tracing into a simplified scene” 
 

 Diffuse GI: 
 Multiple directions depending on normal 

 Opening angle from cone count 
 

 Specular Reflections: 
 Direction from mirrored eye vector 

 Opening angle from Specular Power 
 

 Not as precise as ray-tracing but 

 Fractional geometry intersection 

 No noise 

 Level of detail 
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Using Voxel Cone Tracing for GI  2/2 

  [Crassin11] can be further optimized / approximated 

 Lower Voxel Resolution 

 Gather instead of scatter in Voxel Lighting pass 

 Adaptive sampling, sample reuse 

 

 Additional Benefits 

 Shadowed IBL 

 Shadowed area lights 

from emissive materials 

VL enabled VL disabled 



Advances in Real-Time Rendering in   

3D Graphics and Games Course 
Voxel Cone Tracing Challenges 

 Stepping through thin walls 

 Wide cones show artifacts but narrow cones are slow 

 Mip maps need to be direction dependent 

 Creating voxel data from triangle meshes 

 Run-time memory management 

 Efficient implementation on GPU hardware 

 Sparse data structures 
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Sparse Voxel Octree 

 Mapping function allows locally higher resolution 

 World 3D position <=> Index and local 3D position 

 Fully maintained on GPU 

 Index to access render stage specific data 

 Per node/leaf data 

 2x2x2 voxel data (placed at octree node corners) 

 6x 3x3x3 voxel data (like 2x2x2 with additional border) 
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Filter and 

Finalize 
Voxelization 

Diffuse 

Sampling 

Screen 

Space 

Voxel 

Space 

Specular 

Sampling 

Voxel Lighting Pipeline 

each frame on demand 

Lighting 
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 Create voxel geometry data in a Region 
 Input: Octree, Triangle Mesh, Instance Data, Materials, Region 

 Output: Octree, 2x2x2 material attributes, normal 

 Region revoxelization 
 Geometry changes 

 Material changes 

 Resolution changes 

 Optimized for few dynamic objects 
 Revoxelize on demand 

 Region keeps static voxel data separate 

Voxelization 1/2 

3D Scene 

Voxel resolution as color 
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Voxelization 2/2 

 Pixel shader pass using hardware rasterizer 
 One rasterization pass per axis (X, Y, Z) to avoid holes 

 Shader evaluates artist defined material 

 Output: fragment queue that is processed by following CS 

 Compute Shader pass 
 Update octree data structures (in parallel) 

 Stores voxel data in leaves 

 2 Pass method 
 Better occupancy for second pass (2x2 quad) 

 Shader compile time (reuse CS) 
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Voxel Lighting 

 Compute shading and store Radiance 

 Input: 2x2x2 material attributes, normal 

 Output: 2x2x2 HDR color and opacity 

 Accumulate Irradiance and Shade 

 Add direct light with shadow maps 

 Add ambient color 

 Combine with albedo color 

 Add emissive color 

3D Scene 

Voxel Lighting Data 
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 Generate mip-maps, Create redundant border, Compress 

 Input: 2x2x2 HDR color, occlusion and normal 

 Output: HDR multiplier, 6 x 3x3x3 LDR color and occlusion 

 Generate directionally dependent voxel 

 See view dependent voxels in [Gobbetti05] 

 At leaf level from voxel normal 

 At node level from same direction only 

Filter Voxels and Finalize 

Directionally independent Directionally dependent 
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The Cone Trace function 

   

 Traverse tree to find node index and node local position 

 3 tri-linear filtered lookups in 32 bit volume texture to get 3 directions 

 Weight results based on direction (Ambient Cube [McTaggart04]) 

 

    

 Calls SVOLookup() many times 

 Get all lighting coming from the given direction in a cone 

float4 HDRColorAndOcclusion = SVOLookupLevel (float3 Pos, int Mip, float3 Direction) 

float4  HDRColorAndOcclusion = SVOConeTrace (float3 Pos, float3 Direction, float ConeAngle) 
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Specular Sampling 1/2 

 Per pixel local reflections 

 Cone angle from Specular Power 

 Single cone usually sufficient 

 Complex BRDF possible 

 Adaptive for better performance 

 Specular brightness 

 Depth difference 

 Normal difference 

Up-sample in X 

Scatter Specular 

Up-sample in Y 

Scatter Specular 

Specular 

Refinement 

Point Queue 

Half Res 

Full Res 

Refinement 

Point Queue 
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 Up-sample pass using Dispatch() 

 

 

 Scatter passes use DispatchIndirect() 

 

 

 

Specular Sampling 2/2 

uint Pos = 0; 
InterlockedAdd(State[STATE_Count], 1, Pos); 
InterlockedMax(State[STATE_ThreadGroupCountX], (Pos+63)/64); // saves one pass 
RWScratchColors[Pos] = (ThreadId.y << 16) | ThreadId.x; 

Half Res Adaptive Result Refinement 

Point Queue 

Reference 
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Diffuse Sampling 1/2 

 Similar to Final Gathering [Jensen02] 

 Problem: 

 Few samples for good performance 

 Enough samples for quality (cone angle) 

 Well distributed over hemisphere to reduce error 

 Don’t want noise 

 Don’t want to blur over normal details 

 Diffuse is mostly low frequency 

 Coherency important for efficiency 
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 Non-interleaved processing of interleaved 3x3 pattern [Segovia06] 

 9 well distributed cones in world space 

 Loop over 9 directions, then XY 

 Reject samples behind surface normal 

 Output non interleaved 

 Compositing Pass: 

 Recombine non interleaved sub images 

 Weight by normal and depth 

 5x5 filter to account for missing samples 

 Multiply with Albedo color 

Diffuse Sampling 2/2 

5 6 4 5 6 4 

8 9 7 8 9 7 

2 3 1 2 3 1 

5 6 4 5 6 4 

8 9 7 8 9 7 

2 3 1 2 3 1 

………. 

…
…

…
. 

………. 

…
…

…
. 

Interleaved 

Non Interleaved 

Samples on Sphere 
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Voxel Lighting Examples 1/3 

enabled disabled 
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Voxel Lighting Examples 2/3 
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Voxel Lighting Examples 3/3 

enabled disabled 
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Deferred Shading 

Name Format Usage 

Depth D24 Depth 

Stencil S8 Stencil masking 

SceneColor R16G16B16A16f RGB: Emissive and Light Accumulation 

GBufferA R10G10B10A2 RGB: WS Normal, A: Lighting Model 

GBufferB R8G8B8A8 RGB: Specular, A: Ambient Occlusion 

GBufferC R8G8B8A8 RGB: Diffuse, A:Opacity or Decal Mask 

GBufferD R8G8B8A8 R: Specular Power*, GBA: Subsurface Color 

* not in alpha channel because of frame buffer blending limitations 

 Classic deferred shading in PS (one forward pass) 
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New Specular Power Encoding 

NewEncode(x): (log2(Value) + 1) / 19 
 
NewDecode(x): exp2(Value * 19 - 1) 

1.0 

0.0 

OldEncode(x): sqrt(x / 500) 
 
OldDecode(x): x * x * 500 

1.0 

0.0 

 Higher Specular Power for IBL 

 More definition for common values 

 Tweaked to give pixel sharp reflection 

on a far sphere of width 1000 pixel 

Old 

New 
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Gaussian Specular 

Dot = saturate(dot(N, H)) 
Threshold = 0.04 
CosAngle = pow(Threshold, 1 / BlinnPhongSpecularPower) 
NormAngle = (Dot - 1) / (CosAngle – 1) 
LightSpecular = exp(- NormAngle * NormAngle) * Lambert 

Gaussian Phong 

 Gaussian Specular for less aliasing [McKesson12]  

 Our empirical approximation 
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Area Light Specular 

 Soft Sphere Area Light 

 

 

 Energy conserving (approximation) 

 

different radii 

LightAreaAngle = atan(AreaLightFraction / LightDistance) 
ACos = acos(CosAngle)  
CosAngle = cos(ACos + LightAreaAngle) 

SpecularLighting /=  pow(ACos + LightAreaAngle, 2) * 10 
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Specular Comparison 

Area Light + IBL Point Light + IBL 

Area Light Point Light 
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New post processing graph 

 Graph:  

 Created each frame 

 No User Interface 

 Dependencies define execution order 

 RT on demand, ref. counting, lazy release 

 Node: 

 Many types but fixed function 

 Multiple inputs and outputs 

 Defines output texture format 

UpScale 

avg. 4 samples 

ToneMap 

HDR to LDR 

 

GaussianBlurX 

DownSample 

4 to1 

 

PostProcessAA 

FXAA 

TextureInput 

Scene Color 

 

GaussianBlurY 

Example Graph 
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Screen Space Ambient Occlusion 

 Classic SSAO [Kajalin09] 

 Ambient occlusion computed as post process 

 Only requires z buffer and 3d point samples 

 Few samples are permutated with small screen aligned pattern 

 Our technique is based on 2d point samples 

 Angle based similar to HBAO [Sainz08] 

 Using GBuffer normal improves quality further 

 Complements Voxel Lighting with high frequency details 
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 We use 6 sample pairs = 12 samples into half res z buffer 

 16 rotations with scale interleaved in 4x4 pattern 

 

SSAO sampling 

+ = 
6 Samples 

pairs 

16 rotations with scale 

in 4x4 pixel block 

192 samples 

in 4x4 pixel block 



Advances in Real-Time Rendering in   

3D Graphics and Games Course 
SSAO with per pixel normal 

 Per pixel normal further restricts angle 

A B C D E 

A) Given: z buffer in the sample direction 
B) Get equi-distant z values from samples 
C) AO (so far) = min((angle_left+angle_right)/180,1) 
D) Clamp against per pixel normal 
E) AO (per pixel normal) = (angle_left+angle_right)/180 
 

AO ~= 1-saturate(dot(VecA,Normal)/length(VecA)) 
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SSAO Example 

SSAO with per pixel Normal 

 

SSAO (Depth only) 
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SSAO Example Close-up 

SSAO with per pixel Normal 

 

SSAO (Depth only) 
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Image Based Lens Flares 1/2 

 Lens flares are out of focus reflections on the camera lens 

 Image based method 

 Threshold and blur bright image parts 

 Scale and mirror image multiple times 

 Soft mask screen borders 

 Lens/Bokeh Blur (for out of focus) 

 Render a textured sprite for each very bright low res pixel 

 Ideally for each lens reflection with different radius 
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Source Image with Bloom 

Image Based Lens Flares 2/2 

IB Lens Flares (without Lens Blur) 

IB Lens Flares (with Lens Blur) Lens Blur Sprite Image 



Advances in Real-Time Rendering in   

3D Graphics and Games Course 
IB Lens Flares Examples 

Emissive (Sun) Emissive (Fire) Reflections 
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HDR Histogram [Scheuermann07]  

 64 Buckets, logarithmic, no atomics 
 

 Pass 1: Generate screen local histograms (CS) in parallel 

 

 
 

 

 Pass 2: Combine all lines into one 
 

 64 Buckets are stored in 16 ARGB 

 

Clear groupshared histograms float[64][16]  
Sync 
Accumulate histograms in parallel  
Sync 
Accumulate many Histograms to one float4[16] 
Output one Histogram per line in 16 texels 
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Eye Adaptation 

 Compute average brightness from Histogram (blue line)  

 Consider only bright areas (e.g. >90%) 

 Reject few very bright areas (very bright emissive, e.g. >98%) 

 Compute single multiplier for whole view port 

 Smoothly blend with last frame average (white bar) 

 Bound in user specified region (green) 

 Apply in tone mapper (white curve) 

 Read result in tone mapping VS 

 Pass to PS as interpolator 
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GPU accelerated particles 

 CPU 

 Spawn particles (arbitrarily complex logic) 

 Memory management in fixed size buffers (unit: 16 particles) 

 Emitter management (Index buffer, draw call sorting) 

 GPU 

 Motion from Newtonian mechanics (fixed function)  

 Lighting from non directional volume cascades (3D lookups) 

 GPU Radix depth sort if required [Merrill11] [Satish09] 

 Rendering 

 Additional forces from Vector Fields* (3D lookup) 

 Particle Curves to modulate particle attributes* (1D lookup) 

* See next slides 
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Particle Attributes 

 State-full simulation [Lutz04] 

 Allows more complex animations 

 Stored over particle lifetime 
 

 

 

 
 

 

 Particle Curves: Time Phase and Scale 

Name Format Usage 

Position R32G32B32A32f World Space Position*, Time Phase 

Velocity R16G16B16A16f World Space Velocity, Time Scale 

Render Attrib. R8G8B8A8 Size, Rotation  

Simulation Attrib. R8G8B8A8 Drag, Vector Field Scale, Random Seed 
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 Concept 

 1D Function of time 

 Artist driven (arbitrary complex) 

 Implementation 

 

 

 Filtered texture lookup (Piecewise linear, equidistant) 

 Sample count depends on source curve (error threshold) 

 Many 1D curves packed into single 2D texture 

 

Particle Curves 

Name Format Usage 

Attributes R8G8B8A8 Modulate simulation or render attributes 
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 Per volume attributes 

 World to Volume matrix 

 Force scale (accumulate) 

 Velocity scale (weighted blend) 

 Affect all particle systems globally or a single system 

 Per volume element attributes 

 

 

 Can be imported from Maya 

 Unified interface for many kind of complex motions 

Particle Vector Fields 

Name Format Usage 

OffsetVector R16G16B16A16f Force or Velocity Delta 
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Shadow receiving Translucency 
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Volumetric direct and indirect lighting  
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> 1 Million Particles 
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Thanks 

 NVIDIA, AMD 

 Special thanks to Cyril Crassin and Evan Hart from NVIDIA  

 Epic  

 Rendering team: Daniel Wright, Andrew Scheidecker, Nick Penwarden 

 Everyone that contributed to Unreal Engine 4 
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 Work on leading game engine 

 Unreal Engine 3 

 Upcoming: Unreal Engine 4 

 Ship successful games 

 Gear Of War 1-3, Infinity Blade 1-2, … 

 Upcoming: Fortnite, Infinity Blade: Dungeons 

 Target many platforms: 

 Xbox 360, PlayStation 3, PC DX9/11, 

Mobile, Mac, next gen consoles 

 Main office in North Carolina 

www.EpicGames.com/jobs 

http://www.epicgames.com/jobs
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 [Crassin11] Interactive Indirect Illumination and Ambient Occlusion Using Voxel Cone Tracing 

Interactive Indirect Illumination Using Voxel Cone Tracing, Sep 2011 

http://research.nvidia.com/sites/default/files/publications/GIVoxels-pg2011-authors.pdf 

 [Kawase04] Practical Implementation of High Dynamic Range Rendering 

http://www.daionet.gr.jp/~masa/archives/GDC2004/GDC2004_PIoHDRR_SHORT_EN.ppt 

 [Segovia06] Non-interleaved Deferred Shading of Interleaved Sample Patterns 

http://liris.cnrs.fr/Documents/Liris-2476.pdf 

 [Kajalin09] Screen Space Ambient Occlusion 

ShaderX7 - Advanced Rendering Techniques 

 [Sainz08] Image-Space Horizon-Based Ambient Occlusion 

http://www.nvidia.com/object/siggraph-2008-HBAO.html 

 [Tabellion08] Practical Global Illumination with Irradiance Caching 

http://cgg.mff.cuni.cz/~jaroslav/papers/2008-irradiance_caching_class/10-EricSlides.pdf 

 [Toksvig05] Mipmapping normal maps. Journal of Graphics Tools 10, 3, 65–71 

ftp://download.nvidia.com/developer/Papers/Mipmapping_Normal_Maps.pdf 

 [Bruneton11] A Survey of Non-linear Pre-filtering Methods for Efficient and Accurate Surface Shading 

http://hal.inria.fr/docs/00/58/99/40/PDF/article.pdf 

 [McKesson12] Gaussian Specular from Learning Modern 3D Graphics Programming 

http://www.arcsynthesis.org/gltut/Illumination/Tut11%20Gaussian.html 

http://arcsynthesis.org/gltut/Illumination/Tut11%20On%20Performance.html 

 [Scheuermann07] Efficient Histogram Generation Using Scattering on GPUs 

http://developer.amd.com/gpu_assets/GPUHistogramGeneration_I3D07.pdf 
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Bloom 1/2 [Kawase04] 

 Goal: Large, high quality, efficient  

 Down sample: 

 

 

 

 Blur during downsample avoids aliasing 

 

 

 

 

 

A = downsample2(FullRes) 
B = downsample2(A) 
C = downsample2(B) 
D = downsample2(C) 
E = downsample2(D) 

Without blur (1sample): 

With blur (4 samples): 
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Bloom 2/2 

 Recombine (with increasing resolution): 

 

 
 

 Blurring while up sampling 
 Improves quality 

 Barely affects blur radius 

 

 Combine with dirt texture 

 
 

E’= blur(E,b5) 
D’= blur(D,b4)+E’ 
C’= blur(C,b3)+D’ 
B’= blur(B,b2)+C’ 
A’= blur(A,b1)+B’ 

blur(blur(X,a),b) ~= blur(X,max(a,b))  
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Bloom Example 

Bloom with 5 Gaussians and Dirt 

 

Bloom with single Gaussian 
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GBuffer Blur 1/2 

 Smart blur: 

 Average of 5 pixels 

 Weighted by normal 

 Weighted by depth difference 

 Applications: 

 Reduce aliasing of specular materials (noticeable in motion) 

 Reduce high frequency dither artifacts in Ambient Occlusion 

 Can increase performance of with IBL or Voxel Lighting 
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GBuffer Blur 2/2 

 Using Gather() where possible (Depth, AO) 

 Output: SpecularPower, Normal, AmbientOcclusion 

 Reduce Specular Power [Toksvig05] [Bruneton11] 

 

 

L = saturate(length(SumNormal) * 1.002) 
SpecularPower *= L / (L + SpecularPower * (1 - L)) 

X Y 
Z W 

Kernel using 5 samples single Gather Kernel using 2 Gather 
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without GBuffer Blur 

with GBuffer Blur 
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SSS Material Example 

shadowed unshadowed 
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Auxiliary to the graph 

 Post Process Volume: 

 Linearly blends Post process properties 

 Priority depending on camera position 

 Soft transitions with Blend Radius 

 Weight can be controlled remotely 

 Render Target Pool: 

 Allocation on demand, reference counting 

 Deferred release 

 Tools to look at intermediate Buffers 
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enabled disabled 
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