
Advances in Real-Time Rendering in

3D Graphics and Games Course

Advances in Real-Time Rendering in

3D Graphics and Games Course
The Technology Behind the

“Unreal Engine 4 Elemental demo”

Advances in Real-Time Rendering in

3D Graphics and Games Course

Martin Mittring

Senior Graphics Architect

Martin.Mittring@EpicGames.com

Epic Games, Inc.

Advances in Real-Time Rendering in

3D Graphics and Games Course Overview

 Real-time Demo

 Graphical Features

 Indirect Lighting

 Shading

 Post Processing

 Particles

 Questions

Advances in Real-Time Rendering in

3D Graphics and Games Course
Elemental demo

 GDC 2012 demo behind closed doors

 Demonstrate and drive development of Unreal® Engine 4

 NVIDIA® Kepler GK104 (GTX 680)

 Direct3D® 11

 No preprocessing

 Real-time

 30 fps

 FXAA

 1080p at 90%

Advances in Real-Time Rendering in

3D Graphics and Games Course Real-Time Demo

Advances in Real-Time Rendering in

3D Graphics and Games Course
Transition to Unreal Engine 4

 Shrink

 Removed rarely used features

 Unify renderer interface using Direct3D 11 as guidance

 Research

 Samaritan demo (Direct3D 11, Deferred shading, Tessellation, …)

 Elemental demo (Global Illumination, …)

 Expand

 Bigger changes (Derived Data cache, new Editor UI, …)

Advances in Real-Time Rendering in

3D Graphics and Games Course
Working on Unreal Engine 4

 This caught our attention:

Interactive Indirect Illumination and Ambient Occlusion

Using Voxel Cone Tracing [Crassin11]

More details:

Beyond Programmable Shading Course

Tuesday, 9 am - 12 pm

Advances in Real-Time Rendering in

3D Graphics and Games Course Indirect Lighting

Advances in Real-Time Rendering in

3D Graphics and Games Course

 Volume ray casting [Groeller05]

 Start with some start bias

 Content adaptive step size

 Lookup radiance and occlusion

 Accumulate light with occlusion

 Stop if occluded or far enough

 Cone trace

 Mip level from local cone width

 Progressively increasing step size

Voxel Cone Tracing Concept

Cone

Voxel

Data

Advances in Real-Time Rendering in

3D Graphics and Games Course
Using Voxel Cone Tracing for GI 1/2

 Like “Ray-tracing into a simplified scene”

 Diffuse GI:
 Multiple directions depending on normal

 Opening angle from cone count

 Specular Reflections:
 Direction from mirrored eye vector

 Opening angle from Specular Power

 Not as precise as ray-tracing but

 Fractional geometry intersection

 No noise

 Level of detail

Advances in Real-Time Rendering in

3D Graphics and Games Course
Using Voxel Cone Tracing for GI 2/2

 [Crassin11] can be further optimized / approximated

 Lower Voxel Resolution

 Gather instead of scatter in Voxel Lighting pass

 Adaptive sampling, sample reuse

 Additional Benefits

 Shadowed IBL

 Shadowed area lights

from emissive materials

VL enabled VL disabled

Advances in Real-Time Rendering in

3D Graphics and Games Course
Voxel Cone Tracing Challenges

 Stepping through thin walls

 Wide cones show artifacts but narrow cones are slow

 Mip maps need to be direction dependent

 Creating voxel data from triangle meshes

 Run-time memory management

 Efficient implementation on GPU hardware

 Sparse data structures

Advances in Real-Time Rendering in

3D Graphics and Games Course
Sparse Voxel Octree

 Mapping function allows locally higher resolution

 World 3D position <=> Index and local 3D position

 Fully maintained on GPU

 Index to access render stage specific data

 Per node/leaf data

 2x2x2 voxel data (placed at octree node corners)

 6x 3x3x3 voxel data (like 2x2x2 with additional border)

Advances in Real-Time Rendering in

3D Graphics and Games Course

Filter and

Finalize
Voxelization

Diffuse

Sampling

Screen

Space

Voxel

Space

Specular

Sampling

Voxel Lighting Pipeline

each frame on demand

Lighting

Advances in Real-Time Rendering in

3D Graphics and Games Course

 Create voxel geometry data in a Region
 Input: Octree, Triangle Mesh, Instance Data, Materials, Region

 Output: Octree, 2x2x2 material attributes, normal

 Region revoxelization
 Geometry changes

 Material changes

 Resolution changes

 Optimized for few dynamic objects
 Revoxelize on demand

 Region keeps static voxel data separate

Voxelization 1/2

3D Scene

Voxel resolution as color

Advances in Real-Time Rendering in

3D Graphics and Games Course
Voxelization 2/2

 Pixel shader pass using hardware rasterizer
 One rasterization pass per axis (X, Y, Z) to avoid holes

 Shader evaluates artist defined material

 Output: fragment queue that is processed by following CS

 Compute Shader pass
 Update octree data structures (in parallel)

 Stores voxel data in leaves

 2 Pass method
 Better occupancy for second pass (2x2 quad)

 Shader compile time (reuse CS)

Advances in Real-Time Rendering in

3D Graphics and Games Course
Voxel Lighting

 Compute shading and store Radiance

 Input: 2x2x2 material attributes, normal

 Output: 2x2x2 HDR color and opacity

 Accumulate Irradiance and Shade

 Add direct light with shadow maps

 Add ambient color

 Combine with albedo color

 Add emissive color

3D Scene

Voxel Lighting Data

Advances in Real-Time Rendering in

3D Graphics and Games Course

 Generate mip-maps, Create redundant border, Compress

 Input: 2x2x2 HDR color, occlusion and normal

 Output: HDR multiplier, 6 x 3x3x3 LDR color and occlusion

 Generate directionally dependent voxel

 See view dependent voxels in [Gobbetti05]

 At leaf level from voxel normal

 At node level from same direction only

Filter Voxels and Finalize

Directionally independent Directionally dependent

Advances in Real-Time Rendering in

3D Graphics and Games Course
The Cone Trace function



 Traverse tree to find node index and node local position

 3 tri-linear filtered lookups in 32 bit volume texture to get 3 directions

 Weight results based on direction (Ambient Cube [McTaggart04])



 Calls SVOLookup() many times

 Get all lighting coming from the given direction in a cone

float4 HDRColorAndOcclusion = SVOLookupLevel (float3 Pos, int Mip, float3 Direction)

float4 HDRColorAndOcclusion = SVOConeTrace (float3 Pos, float3 Direction, float ConeAngle)

Advances in Real-Time Rendering in

3D Graphics and Games Course
Specular Sampling 1/2

 Per pixel local reflections

 Cone angle from Specular Power

 Single cone usually sufficient

 Complex BRDF possible

 Adaptive for better performance

 Specular brightness

 Depth difference

 Normal difference

Up-sample in X

Scatter Specular

Up-sample in Y

Scatter Specular

Specular

Refinement

Point Queue

Half Res

Full Res

Refinement

Point Queue

Advances in Real-Time Rendering in

3D Graphics and Games Course

 Up-sample pass using Dispatch()

 Scatter passes use DispatchIndirect()

Specular Sampling 2/2

uint Pos = 0;
InterlockedAdd(State[STATE_Count], 1, Pos);
InterlockedMax(State[STATE_ThreadGroupCountX], (Pos+63)/64); // saves one pass
RWScratchColors[Pos] = (ThreadId.y << 16) | ThreadId.x;

Half Res Adaptive Result Refinement

Point Queue

Reference

Advances in Real-Time Rendering in

3D Graphics and Games Course
Diffuse Sampling 1/2

 Similar to Final Gathering [Jensen02]

 Problem:

 Few samples for good performance

 Enough samples for quality (cone angle)

 Well distributed over hemisphere to reduce error

 Don’t want noise

 Don’t want to blur over normal details

 Diffuse is mostly low frequency

 Coherency important for efficiency

Advances in Real-Time Rendering in

3D Graphics and Games Course

 Non-interleaved processing of interleaved 3x3 pattern [Segovia06]

 9 well distributed cones in world space

 Loop over 9 directions, then XY

 Reject samples behind surface normal

 Output non interleaved

 Compositing Pass:

 Recombine non interleaved sub images

 Weight by normal and depth

 5x5 filter to account for missing samples

 Multiply with Albedo color

Diffuse Sampling 2/2

5 6 4 5 6 4

8 9 7 8 9 7

2 3 1 2 3 1

5 6 4 5 6 4

8 9 7 8 9 7

2 3 1 2 3 1

……….

…
…

…
.

……….

…
…

…
.

Interleaved

Non Interleaved

Samples on Sphere

Advances in Real-Time Rendering in

3D Graphics and Games Course
Voxel Lighting Examples 1/3

enabled disabled

Advances in Real-Time Rendering in

3D Graphics and Games Course
Voxel Lighting Examples 2/3

Advances in Real-Time Rendering in

3D Graphics and Games Course
Voxel Lighting Examples 3/3

enabled disabled

Advances in Real-Time Rendering in

3D Graphics and Games Course Shading

Advances in Real-Time Rendering in

3D Graphics and Games Course

Advances in Real-Time Rendering in

3D Graphics and Games Course
Deferred Shading

Name Format Usage

Depth D24 Depth

Stencil S8 Stencil masking

SceneColor R16G16B16A16f RGB: Emissive and Light Accumulation

GBufferA R10G10B10A2 RGB: WS Normal, A: Lighting Model

GBufferB R8G8B8A8 RGB: Specular, A: Ambient Occlusion

GBufferC R8G8B8A8 RGB: Diffuse, A:Opacity or Decal Mask

GBufferD R8G8B8A8 R: Specular Power*, GBA: Subsurface Color

* not in alpha channel because of frame buffer blending limitations

 Classic deferred shading in PS (one forward pass)

Advances in Real-Time Rendering in

3D Graphics and Games Course
New Specular Power Encoding

NewEncode(x): (log2(Value) + 1) / 19

NewDecode(x): exp2(Value * 19 - 1)

1.0

0.0

OldEncode(x): sqrt(x / 500)

OldDecode(x): x * x * 500

1.0

0.0

 Higher Specular Power for IBL

 More definition for common values

 Tweaked to give pixel sharp reflection

on a far sphere of width 1000 pixel

Old

New

Advances in Real-Time Rendering in

3D Graphics and Games Course
Gaussian Specular

Dot = saturate(dot(N, H))
Threshold = 0.04
CosAngle = pow(Threshold, 1 / BlinnPhongSpecularPower)
NormAngle = (Dot - 1) / (CosAngle – 1)
LightSpecular = exp(- NormAngle * NormAngle) * Lambert

Gaussian Phong

 Gaussian Specular for less aliasing [McKesson12]

 Our empirical approximation

Advances in Real-Time Rendering in

3D Graphics and Games Course
Area Light Specular

 Soft Sphere Area Light

 Energy conserving (approximation)

different radii

LightAreaAngle = atan(AreaLightFraction / LightDistance)
ACos = acos(CosAngle)
CosAngle = cos(ACos + LightAreaAngle)

SpecularLighting /= pow(ACos + LightAreaAngle, 2) * 10

Advances in Real-Time Rendering in

3D Graphics and Games Course
Specular Comparison

Area Light + IBL Point Light + IBL

Area Light Point Light

Advances in Real-Time Rendering in

3D Graphics and Games Course Post Processing

Advances in Real-Time Rendering in

3D Graphics and Games Course
New post processing graph

 Graph:

 Created each frame

 No User Interface

 Dependencies define execution order

 RT on demand, ref. counting, lazy release

 Node:

 Many types but fixed function

 Multiple inputs and outputs

 Defines output texture format

UpScale

avg. 4 samples

ToneMap

HDR to LDR

GaussianBlurX

DownSample

4 to1

PostProcessAA

FXAA

TextureInput

Scene Color

GaussianBlurY

Example Graph

Advances in Real-Time Rendering in

3D Graphics and Games Course
Screen Space Ambient Occlusion

 Classic SSAO [Kajalin09]

 Ambient occlusion computed as post process

 Only requires z buffer and 3d point samples

 Few samples are permutated with small screen aligned pattern

 Our technique is based on 2d point samples

 Angle based similar to HBAO [Sainz08]

 Using GBuffer normal improves quality further

 Complements Voxel Lighting with high frequency details

Advances in Real-Time Rendering in

3D Graphics and Games Course

 We use 6 sample pairs = 12 samples into half res z buffer

 16 rotations with scale interleaved in 4x4 pattern

SSAO sampling

+ =
6 Samples

pairs

16 rotations with scale

in 4x4 pixel block

192 samples

in 4x4 pixel block

Advances in Real-Time Rendering in

3D Graphics and Games Course
SSAO with per pixel normal

 Per pixel normal further restricts angle

A B C D E

A) Given: z buffer in the sample direction
B) Get equi-distant z values from samples
C) AO (so far) = min((angle_left+angle_right)/180,1)
D) Clamp against per pixel normal
E) AO (per pixel normal) = (angle_left+angle_right)/180

AO ~= 1-saturate(dot(VecA,Normal)/length(VecA))

Advances in Real-Time Rendering in

3D Graphics and Games Course
SSAO Example

SSAO with per pixel Normal

SSAO (Depth only)

Advances in Real-Time Rendering in

3D Graphics and Games Course
SSAO Example Close-up

SSAO with per pixel Normal

SSAO (Depth only)

Advances in Real-Time Rendering in

3D Graphics and Games Course
Image Based Lens Flares 1/2

 Lens flares are out of focus reflections on the camera lens

 Image based method

 Threshold and blur bright image parts

 Scale and mirror image multiple times

 Soft mask screen borders

 Lens/Bokeh Blur (for out of focus)

 Render a textured sprite for each very bright low res pixel

 Ideally for each lens reflection with different radius

Advances in Real-Time Rendering in

3D Graphics and Games Course

Source Image with Bloom

Image Based Lens Flares 2/2

IB Lens Flares (without Lens Blur)

IB Lens Flares (with Lens Blur) Lens Blur Sprite Image

Advances in Real-Time Rendering in

3D Graphics and Games Course
IB Lens Flares Examples

Emissive (Sun) Emissive (Fire) Reflections

Advances in Real-Time Rendering in

3D Graphics and Games Course
HDR Histogram [Scheuermann07]

 64 Buckets, logarithmic, no atomics

 Pass 1: Generate screen local histograms (CS) in parallel

 Pass 2: Combine all lines into one

 64 Buckets are stored in 16 ARGB

Clear groupshared histograms float[64][16]
Sync
Accumulate histograms in parallel
Sync
Accumulate many Histograms to one float4[16]
Output one Histogram per line in 16 texels

Advances in Real-Time Rendering in

3D Graphics and Games Course
Eye Adaptation

 Compute average brightness from Histogram (blue line)

 Consider only bright areas (e.g. >90%)

 Reject few very bright areas (very bright emissive, e.g. >98%)

 Compute single multiplier for whole view port

 Smoothly blend with last frame average (white bar)

 Bound in user specified region (green)

 Apply in tone mapper (white curve)

 Read result in tone mapping VS

 Pass to PS as interpolator

Advances in Real-Time Rendering in

3D Graphics and Games Course Particles

Advances in Real-Time Rendering in

3D Graphics and Games Course
GPU accelerated particles

 CPU

 Spawn particles (arbitrarily complex logic)

 Memory management in fixed size buffers (unit: 16 particles)

 Emitter management (Index buffer, draw call sorting)

 GPU

 Motion from Newtonian mechanics (fixed function)

 Lighting from non directional volume cascades (3D lookups)

 GPU Radix depth sort if required [Merrill11] [Satish09]

 Rendering

 Additional forces from Vector Fields* (3D lookup)

 Particle Curves to modulate particle attributes* (1D lookup)

* See next slides

Advances in Real-Time Rendering in

3D Graphics and Games Course
Particle Attributes

 State-full simulation [Lutz04]

 Allows more complex animations

 Stored over particle lifetime

 Particle Curves: Time Phase and Scale

Name Format Usage

Position R32G32B32A32f World Space Position*, Time Phase

Velocity R16G16B16A16f World Space Velocity, Time Scale

Render Attrib. R8G8B8A8 Size, Rotation

Simulation Attrib. R8G8B8A8 Drag, Vector Field Scale, Random Seed

Advances in Real-Time Rendering in

3D Graphics and Games Course

 Concept

 1D Function of time

 Artist driven (arbitrary complex)

 Implementation

 Filtered texture lookup (Piecewise linear, equidistant)

 Sample count depends on source curve (error threshold)

 Many 1D curves packed into single 2D texture

Particle Curves

Name Format Usage

Attributes R8G8B8A8 Modulate simulation or render attributes

Advances in Real-Time Rendering in

3D Graphics and Games Course

 Per volume attributes

 World to Volume matrix

 Force scale (accumulate)

 Velocity scale (weighted blend)

 Affect all particle systems globally or a single system

 Per volume element attributes

 Can be imported from Maya

 Unified interface for many kind of complex motions

Particle Vector Fields

Name Format Usage

OffsetVector R16G16B16A16f Force or Velocity Delta

Advances in Real-Time Rendering in

3D Graphics and Games Course

Shadow receiving Translucency

Advances in Real-Time Rendering in

3D Graphics and Games Course

Volumetric direct and indirect lighting

Advances in Real-Time Rendering in

3D Graphics and Games Course

> 1 Million Particles

Advances in Real-Time Rendering in

3D Graphics and Games Course
Thanks

 NVIDIA, AMD

 Special thanks to Cyril Crassin and Evan Hart from NVIDIA

 Epic

 Rendering team: Daniel Wright, Andrew Scheidecker, Nick Penwarden

 Everyone that contributed to Unreal Engine 4

Advances in Real-Time Rendering in

3D Graphics and Games Course

Advances in Real-Time Rendering in

3D Graphics and Games Course Epic Games is hiring

 Work on leading game engine

 Unreal Engine 3

 Upcoming: Unreal Engine 4

 Ship successful games

 Gear Of War 1-3, Infinity Blade 1-2, …

 Upcoming: Fortnite, Infinity Blade: Dungeons

 Target many platforms:

 Xbox 360, PlayStation 3, PC DX9/11,

Mobile, Mac, next gen consoles

 Main office in North Carolina

www.EpicGames.com/jobs

http://www.epicgames.com/jobs

Advances in Real-Time Rendering in

3D Graphics and Games Course

 [Crassin11] Interactive Indirect Illumination and Ambient Occlusion Using Voxel Cone Tracing

Interactive Indirect Illumination Using Voxel Cone Tracing, Sep 2011

http://research.nvidia.com/sites/default/files/publications/GIVoxels-pg2011-authors.pdf

 [Kawase04] Practical Implementation of High Dynamic Range Rendering

http://www.daionet.gr.jp/~masa/archives/GDC2004/GDC2004_PIoHDRR_SHORT_EN.ppt

 [Segovia06] Non-interleaved Deferred Shading of Interleaved Sample Patterns

http://liris.cnrs.fr/Documents/Liris-2476.pdf

 [Kajalin09] Screen Space Ambient Occlusion

ShaderX7 - Advanced Rendering Techniques

 [Sainz08] Image-Space Horizon-Based Ambient Occlusion

http://www.nvidia.com/object/siggraph-2008-HBAO.html

 [Tabellion08] Practical Global Illumination with Irradiance Caching

http://cgg.mff.cuni.cz/~jaroslav/papers/2008-irradiance_caching_class/10-EricSlides.pdf

 [Toksvig05] Mipmapping normal maps. Journal of Graphics Tools 10, 3, 65–71

ftp://download.nvidia.com/developer/Papers/Mipmapping_Normal_Maps.pdf

 [Bruneton11] A Survey of Non-linear Pre-filtering Methods for Efficient and Accurate Surface Shading

http://hal.inria.fr/docs/00/58/99/40/PDF/article.pdf

 [McKesson12] Gaussian Specular from Learning Modern 3D Graphics Programming

http://www.arcsynthesis.org/gltut/Illumination/Tut11%20Gaussian.html

http://arcsynthesis.org/gltut/Illumination/Tut11%20On%20Performance.html

 [Scheuermann07] Efficient Histogram Generation Using Scattering on GPUs

http://developer.amd.com/gpu_assets/GPUHistogramGeneration_I3D07.pdf

References 1/2

http://research.nvidia.com/sites/default/files/publications/GIVoxels-pg2011-authors.pdf
http://research.nvidia.com/sites/default/files/publications/GIVoxels-pg2011-authors.pdf
http://research.nvidia.com/sites/default/files/publications/GIVoxels-pg2011-authors.pdf
http://research.nvidia.com/sites/default/files/publications/GIVoxels-pg2011-authors.pdf
http://research.nvidia.com/sites/default/files/publications/GIVoxels-pg2011-authors.pdf
http://research.nvidia.com/sites/default/files/publications/GIVoxels-pg2011-authors.pdf
http://research.nvidia.com/sites/default/files/publications/GIVoxels-pg2011-authors.pdf
http://www.daionet.gr.jp/~masa/archives/GDC2004/GDC2004_PIoHDRR_SHORT_EN.ppt
http://www.daionet.gr.jp/~masa/archives/GDC2004/GDC2004_PIoHDRR_SHORT_EN.ppt
http://www.daionet.gr.jp/~masa/archives/GDC2004/GDC2004_PIoHDRR_SHORT_EN.ppt
http://liris.cnrs.fr/Documents/Liris-2476.pdf
http://liris.cnrs.fr/Documents/Liris-2476.pdf
http://liris.cnrs.fr/Documents/Liris-2476.pdf
http://liris.cnrs.fr/Documents/Liris-2476.pdf
http://www.nvidia.com/object/siggraph-2008-HBAO.html
http://www.nvidia.com/object/siggraph-2008-HBAO.html
http://www.nvidia.com/object/siggraph-2008-HBAO.html
http://www.nvidia.com/object/siggraph-2008-HBAO.html
http://www.nvidia.com/object/siggraph-2008-HBAO.html
http://www.nvidia.com/object/siggraph-2008-HBAO.html
http://cgg.mff.cuni.cz/~jaroslav/papers/2008-irradiance_caching_class/10-EricSlides.pdf
http://cgg.mff.cuni.cz/~jaroslav/papers/2008-irradiance_caching_class/10-EricSlides.pdf
http://cgg.mff.cuni.cz/~jaroslav/papers/2008-irradiance_caching_class/10-EricSlides.pdf
http://cgg.mff.cuni.cz/~jaroslav/papers/2008-irradiance_caching_class/10-EricSlides.pdf
http://cgg.mff.cuni.cz/~jaroslav/papers/2008-irradiance_caching_class/10-EricSlides.pdf
http://cgg.mff.cuni.cz/~jaroslav/papers/2008-irradiance_caching_class/10-EricSlides.pdf
http://cgg.mff.cuni.cz/~jaroslav/papers/2008-irradiance_caching_class/10-EricSlides.pdf
ftp://download.nvidia.com/developer/Papers/Mipmapping_Normal_Maps.pdf
ftp://download.nvidia.com/developer/Papers/Mipmapping_Normal_Maps.pdf
http://hal.inria.fr/docs/00/58/99/40/PDF/article.pdf
http://hal.inria.fr/docs/00/58/99/40/PDF/article.pdf
http://hal.inria.fr/docs/00/58/99/40/PDF/article.pdf
http://www.arcsynthesis.org/gltut/Illumination/Tut11 Gaussian.html
http://www.arcsynthesis.org/gltut/Illumination/Tut11 Gaussian.html
http://arcsynthesis.org/gltut/Illumination/Tut11 On Performance.html
http://arcsynthesis.org/gltut/Illumination/Tut11 On Performance.html
http://developer.amd.com/gpu_assets/GPUHistogramGeneration_I3D07.pdf
http://developer.amd.com/gpu_assets/GPUHistogramGeneration_I3D07.pdf
http://developer.amd.com/gpu_assets/GPUHistogramGeneration_I3D07.pdf

Advances in Real-Time Rendering in

3D Graphics and Games Course

 [Gobbetti05] Far Voxels: A Multiresolution Framework for Interactive Rendering of Huge Complex 3D Models on Commodity Graphics Platforms

http://www.crs4.it/vic/cgi-bin/bib-page.cgi?id='Gobbetti:2005:FV‘

 [Mittring11] The Technology Behind the DirectX 11 Unreal Engine "Samaritan" Demo

http://udn.epicgames.com/Three/rsrc/Three/DirectX11Rendering/MartinM_GDC11_DX11_presentation.pdf

 [Lutz04] Building a Million-Particle System

http://www.gamasutra.com/view/feature/130535/building_a_millionparticle_system.php?page=1

 [Lutz11] Everything about Particle Effects

http://www.2ld.de/gdc2007

 [McTaggart04] Half-Life®2 / Valve Source™ Shading

http://www2.ati.com/developer/gdc/D3DTutorial10_Half-Life2_Shading.pdf

 [Merrill11] High Performance and Scalable Radix Sorting

Parallel Processing Letters, vol. 21, no. 2, 2011, pp. 245-272

https://sites.google.com/site/duanemerrill/awards-publications

 [Satish09] Designing Efficient Sorting Algorithms for Manycore GPUs

IPDPS '09: Proceedings of the 2009 IEEE International Symposium on Parallel & Distributed Processing, 2009

http://mgarland.org/files/papers/gpusort-ipdps09.pdf

 [Jensen02] A Practical Guide to Global Illumination using Photon Mapping Siggraph 2002

http://www.cs.princeton.edu/courses/archive/fall02/cs526/papers/course43sig02.pdf

 [Groeller05] A Simple and Flexible Volume Rendering Framework for Graphics-Hardware based Raycasting

http://cumbia.informatik.uni-stuttgart.de/ger/research/pub/pub2005/vg2005-stegmaier.pdf

References 2/2

http://www.crs4.it/vic/cgi-bin/bib-page.cgi?id='Gobbetti:2005:FV
http://www.crs4.it/vic/cgi-bin/bib-page.cgi?id='Gobbetti:2005:FV
http://www.crs4.it/vic/cgi-bin/bib-page.cgi?id='Gobbetti:2005:FV
http://www.crs4.it/vic/cgi-bin/bib-page.cgi?id='Gobbetti:2005:FV
http://www.crs4.it/vic/cgi-bin/bib-page.cgi?id='Gobbetti:2005:FV
http://www.crs4.it/vic/cgi-bin/bib-page.cgi?id='Gobbetti:2005:FV
http://www.crs4.it/vic/cgi-bin/bib-page.cgi?id='Gobbetti:2005:FV
http://www.crs4.it/vic/cgi-bin/bib-page.cgi?id='Gobbetti:2005:FV
http://www.crs4.it/vic/cgi-bin/bib-page.cgi?id='Gobbetti:2005:FV
http://www.crs4.it/vic/cgi-bin/bib-page.cgi?id='Gobbetti:2005:FV
http://www.crs4.it/vic/cgi-bin/bib-page.cgi?id='Gobbetti:2005:FV
http://udn.epicgames.com/Three/rsrc/Three/DirectX11Rendering/MartinM_GDC11_DX11_presentation.pdf
http://udn.epicgames.com/Three/rsrc/Three/DirectX11Rendering/MartinM_GDC11_DX11_presentation.pdf
http://www.gamasutra.com/view/feature/130535/building_a_millionparticle_system.php?page=1
http://www.gamasutra.com/view/feature/130535/building_a_millionparticle_system.php?page=1
http://www.gamasutra.com/view/feature/130535/building_a_millionparticle_system.php?page=1
http://www.2ld.de/gdc2007/
http://www.2ld.de/gdc2007/
http://www2.ati.com/developer/gdc/D3DTutorial10_Half-Life2_Shading.pdf
http://www2.ati.com/developer/gdc/D3DTutorial10_Half-Life2_Shading.pdf
http://www2.ati.com/developer/gdc/D3DTutorial10_Half-Life2_Shading.pdf
http://www2.ati.com/developer/gdc/D3DTutorial10_Half-Life2_Shading.pdf
https://sites.google.com/site/duanemerrill/awards-publications
https://sites.google.com/site/duanemerrill/awards-publications
https://sites.google.com/site/duanemerrill/awards-publications
https://sites.google.com/site/duanemerrill/awards-publications
https://sites.google.com/site/duanemerrill/awards-publications
http://mgarland.org/files/papers/gpusort-ipdps09.pdf
http://mgarland.org/files/papers/gpusort-ipdps09.pdf
http://mgarland.org/files/papers/gpusort-ipdps09.pdf
http://mgarland.org/files/papers/gpusort-ipdps09.pdf
http://mgarland.org/files/papers/gpusort-ipdps09.pdf
http://www.cs.princeton.edu/courses/archive/fall02/cs526/papers/course43sig02.pdf
http://www.cs.princeton.edu/courses/archive/fall02/cs526/papers/course43sig02.pdf
http://www.cs.princeton.edu/courses/archive/fall02/cs526/papers/course43sig02.pdf
http://cumbia.informatik.uni-stuttgart.de/ger/research/pub/pub2005/vg2005-stegmaier.pdf
http://cumbia.informatik.uni-stuttgart.de/ger/research/pub/pub2005/vg2005-stegmaier.pdf
http://cumbia.informatik.uni-stuttgart.de/ger/research/pub/pub2005/vg2005-stegmaier.pdf
http://cumbia.informatik.uni-stuttgart.de/ger/research/pub/pub2005/vg2005-stegmaier.pdf
http://cumbia.informatik.uni-stuttgart.de/ger/research/pub/pub2005/vg2005-stegmaier.pdf
http://cumbia.informatik.uni-stuttgart.de/ger/research/pub/pub2005/vg2005-stegmaier.pdf

Advances in Real-Time Rendering in

3D Graphics and Games Course
Questions?

Advances in Real-Time Rendering in

3D Graphics and Games Course
Bonus slides

Advances in Real-Time Rendering in

3D Graphics and Games Course
Bloom 1/2 [Kawase04]

 Goal: Large, high quality, efficient

 Down sample:

 Blur during downsample avoids aliasing

A = downsample2(FullRes)
B = downsample2(A)
C = downsample2(B)
D = downsample2(C)
E = downsample2(D)

Without blur (1sample):

With blur (4 samples):

Advances in Real-Time Rendering in

3D Graphics and Games Course
Bloom 2/2

 Recombine (with increasing resolution):

 Blurring while up sampling
 Improves quality

 Barely affects blur radius

 Combine with dirt texture

E’= blur(E,b5)
D’= blur(D,b4)+E’
C’= blur(C,b3)+D’
B’= blur(B,b2)+C’
A’= blur(A,b1)+B’

blur(blur(X,a),b) ~= blur(X,max(a,b))

Advances in Real-Time Rendering in

3D Graphics and Games Course
Bloom Example

Bloom with 5 Gaussians and Dirt

Bloom with single Gaussian

Advances in Real-Time Rendering in

3D Graphics and Games Course
GBuffer Blur 1/2

 Smart blur:

 Average of 5 pixels

 Weighted by normal

 Weighted by depth difference

 Applications:

 Reduce aliasing of specular materials (noticeable in motion)

 Reduce high frequency dither artifacts in Ambient Occlusion

 Can increase performance of with IBL or Voxel Lighting

Advances in Real-Time Rendering in

3D Graphics and Games Course
GBuffer Blur 2/2

 Using Gather() where possible (Depth, AO)

 Output: SpecularPower, Normal, AmbientOcclusion

 Reduce Specular Power [Toksvig05] [Bruneton11]

L = saturate(length(SumNormal) * 1.002)
SpecularPower *= L / (L + SpecularPower * (1 - L))

X Y
Z W

Kernel using 5 samples single Gather Kernel using 2 Gather

Advances in Real-Time Rendering in

3D Graphics and Games Course

without GBuffer Blur

with GBuffer Blur

Advances in Real-Time Rendering in

3D Graphics and Games Course
SSS Material Example

shadowed unshadowed

Advances in Real-Time Rendering in

3D Graphics and Games Course
Auxiliary to the graph

 Post Process Volume:

 Linearly blends Post process properties

 Priority depending on camera position

 Soft transitions with Blend Radius

 Weight can be controlled remotely

 Render Target Pool:

 Allocation on demand, reference counting

 Deferred release

 Tools to look at intermediate Buffers

Advances in Real-Time Rendering in

3D Graphics and Games Course
Voxel Lighting Examples 3/5

enabled disabled

Advances in Real-Time Rendering in

3D Graphics and Games Course

Advances in Real-Time Rendering in

3D Graphics and Games Course
Voxel Lighting Examples 5/5

